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Sequence with K1, K2, Kn, Kn+1
Mutually Tangent Circles

Milorad R. Stevanović

Abstract. In this article is given the formula for radius of circle Kn,
where in sequence {Kj}, four circles K1, K2, Kn, Kn+1, for all n ≥ 3,
are mutually tangent. Radius rn is expressed in terms of radii r1, r2,
r3.

Four circles K1, K2, K3, K4, with centers and radii Oj , rj (j = 1, 2, 3, 4)
are mutually tangent what means that each of them is tangent to other
three. From Descartes-Soddy formula
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we get r4 = f(r1, r2, r3). If we, as in Fig. 1, inscribe circles K5,K6, . . . ,Kn−1,Kn

then we have rk = f(r1, r2, rk−1) for all k = 4, . . . , n.
The following problem appeares: Is it possible to express rn in closed form

as a function of first radii r1, r2, r3?
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, (n ≥ 4).
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Fig. 1.

Proof. Formula (2) can be proved by induction. For n = 4 we have Descartes-
Soddy formula. Also, we have
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which proves formula (2). �

Formula (2) can be used in finding radii rn in various configurations. Some
Arbelos configurations of inscribed circles will be considered.

Case 1. (Fig. 2):
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Fig. 2.
Case 2. (Fig. 3):
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Formula similar to formula (2) with 1
r2
→ − 1

r0
in this case is
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which leads to the formula for radius of n-th left circle
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Fig. 3.

Case 3. (Fig. 4):
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From the same recurrence relation as in Case 2 and from formula (2′) we
get formula for radius of n-th left circle
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Similar is the formula for radius of n-th right circle
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Fig. 4.
Case 4. (Fig. 5):
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Formula for radius rn is given by formula (2) if we take r1 → 2r1, r2 → 2r2.
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Fig. 5.
Case 5. (Fig. 6):
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From the same recurrence relation as in Case 2 and from formula (2′) we
get
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Fig. 6.

Case 6. (Fig. 7):
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Applying of formula (2) yields to
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Fig. 7.

Theorem 2 (Pappus). If the center of n-th circle with radius rn inscribed
in arbelos (see Fig. 8) is on the distance dn of the base of arbelos then

dn = 2n · rn.

Fig. 8.

Proof. n-th circle inscribed in arbelos in our notation has radius rn+2 and
distance dn+2 from the base of arbelos.Semiperimeter of triangle O1OOn is
equal to r0. From Archimedes-Heron formula for area of triangle, because
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of r1 + r2 = r0, we have
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In the proof is used the formula for radius of n-th left circle in arbelos.

Theorem 3. If the circles Kn, Kn+1, Kn+2 and Kn+3 are four consecutive
circles from our sequence then for theirs radii we have
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Proof. Radii of these circles are given by unique formula
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(k = n, n + 1, n + 2, n + 3).

The desired formula follows after elimination of r1, r2 and r3 from upper
four formulas. �
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